TMPRSS2 and MSPL Facilitate Trypsin-Independent Porcine Epidemic Diarrhea Virus Replication in Vero Cells
نویسندگان
چکیده
Type II transmembrane serine proteases (TTSPs) facilitate the spread and replication of viruses such as influenza and human coronaviruses, although it remains unclear whether TTSPs play a role in the progression of animal coronavirus infections, such as that by porcine epidemic diarrhea virus (PEDV). In this study, TTSPs including TMPRSS2, HAT, DESC1, and MSPL were tested for their ability to facilitate PEDV replication in Vero cells. Our results showed that TMPRSS2 and MSPL played significant roles in the stages of cell-cell fusion and virus-cell fusion, whereas HAT and DESC1 exhibited weaker effects. This activation may be involved in the interaction between TTSPs and the PEDV S protein, as the S protein extensively co-localized with TMPRSS2 and MSPL and could be cleaved by co-expression with TMPRSS2 or MSPL. Moreover, the use of Vero cells expressing TMPRSS2 and MSPL facilitated PEDV replication in the absence of exogenous trypsin. In sum, we identified two host proteases, TMPRSS2 and MSPL, which may provide insights and a novel method for enhancing viral titers, expanding virus production, and improving the adaptability of PEDV isolates in vitro.
منابع مشابه
Role of proteases in the release of porcine epidemic diarrhea virus from infected cells.
Porcine epidemic diarrhea virus (PEDV), a causative agent of pig diarrhea, requires a protease(s) for multicycle replication in cultured cells. However, the potential role of proteases in the infection process remains unclear. In order to explore this, we used two different approaches: we infected either Vero cells in the presence of trypsin or Vero cells that constitutively express the membran...
متن کاملIdentification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways
Entry of the α-coronavirus porcine epidemic diarrhea virus (PEDV) requires specific proteases to activate spike (S) protein for the membrane fusion of the virion to the host cell following receptor binding. Herein, PEDV isolate 85-7 could proliferate and induce cell-cell fusion in a trypsin independent manner on Vero cells, and eight homologous mutation strains were screened by continuous proli...
متن کاملPropagation of the virus of porcine epidemic diarrhea in cell culture.
Porcine epidemic diarrhea virus (PEDV) was adapted to serial propagation in Vero cell cultures by adding trypsin to the medium. PEDV-infected cells showed a distinct cytoplasmic fluorescence when examined by a fluorescent-antibody-staining technique. Cytopathic effects, such as vacuolation, formation of syncytia, and fusion of cells, were detected even at passage 1 of the PEDV in Vero cells. On...
متن کاملSuppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway
Porcine epidemic diarrhea virus (PEDV) has recently caused high mortality in suckling piglets with subsequent large economic losses to the swine industry. Many intracellular signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, are activated by viral infection. The PI3K/Akt pathway is an important cellular pathway that has been shown to be required for virus replic...
متن کاملEstablishment of MDCK Stable Cell Lines Expressing TMPRSS2 and MSPL and Their Applications in Propagating Influenza Vaccine Viruses in Absence of Exogenous Trypsin
We established two Madin-Darby canine kidney (MDCK) cell lines stably expressing human airway transmembrane protease: transmembrane protease, serine 2 (TMPRSS2) and mosaic serine protease large form (MSPL) which support multicycle growth of two H5 highly pathogenic avian influenza viruses (HPAIV) recombinant vaccines (Re-5 and Re-6) and an H9 avian influenza virus (AIV) recombinant vaccine (Re-...
متن کامل